Beaver Creek Stream Restoration Annual Monitoring Report

Monitoring Year: 2004 Measurement Year: 1 As-built Date: 2002 NCEEP Project Number: 00005

- Delivered to: NCDENR-Ecosystem Enhancement Program 1619 Mail Service Center Raleigh, NC 27699-1619
- Prepared by: Biological & Agricultural Engineering, North Carolina State University Campus Box 7625 Raleigh, NC 27695
- Project Designed By: Earth Tech of North Carolina 701 Corporate Center Drive, Suite 475 Raleigh, NC 27607

Submitted: June, 2005

BEAVER CREEK STREAM RESTORATION 2004 MONITORING REPORT

CONDUCTED FOR THE NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

Table of Contents

Title	Page							
Tabl	e of Co	ontents		Page 1				
I.	Execu	utive Su	mmary / Project Abstract	Page 2				
II.	Projec	Project Background						
	1. Location and Setting							
	2.	Struc	cture and Objectives	Page 4				
	3.	Proje	ect History and Background	Page 4				
	4.	Mon	itoring Plan View	Page 7				
III.	Project Condition and Monitoring Results							
	A. V	A. Vegetation Assessment						
		1.	Soil Data	Page 8				
		2.	Problem areas plan view (vegetation)	Page 8				
		3.	Vegetative Problem Area Plan View	Page 9				
		4.	Stem Counts	Page 9				
		5.	Vegetation Plot Photos	Page 10				
	B. St	B. Stream Assessment						
		1.	Problem Areas Plan View (stream) Exhibit – Appendix B1.	Page 11				
		2.	Problem areas table summary	Page 11				
		3.	Numbered issues photo section	Page 11				
		4.	Fixed photo station photos	Page 11				
		5.	Stability assessment	Page 12				
		6.	Quantitative Morphology	Page 12				
	C.	Bent	hic Macroinvertebrate Assessment	Page 15				
IV.	Metho	odology	7 Section	Page 16				

TABLES

Exhibit Table I.	Project Structure Table	Page 5
Exhibit Table II.	Project Objectives Table	Page 5
Exhibit Table III.	Project Activity and Reporting History	Page 5
Exhibit Table IV.	Project Contact Table	Page 6
Exhibit Table V.	Project Background Table	Page 6
Exhibit Table VI.	Preliminary Soil Data	Page 8
Exhibit Table VII.	Vegetative Problem Areas	Page 9
Exhibit Table VIII.	Stem Counts for Each Species Arranged by Plot	Page 10
Exhibit Table IX.	Stream Problem Areas	Page 11
Exhibit Table X.	Baseline Morphology and Hydraulic Summary	Page 13
Exhibit Table XI.	Morphology and Hydraulic Monitoring Summary	Page 14
Exhibit Table XII.	Wetland Criteria Attainment	Page 15

Appendix A Vegetation Raw Data

1. Vegetation Survey Data Tables

Appendix B Geomorphologic Raw Data -

- 1. Problem Areas Plan View (Stream)
- 2. Representative Stream Problem Area Photos
- 3. Stream Photo-station Photos
- 4. Cross section Plots and Raw Data Tables
- 5. Longitudinal Plots and Raw Data Tables
- 6. Pebble Count Plots and Raw Data Tables

I. <u>Executive Summary/Project Abstract</u>

Overall the stream is not performing as designed. Repair work was completed in the fall of 2003. The following weekend an out of bank event occurred, heavily damaging the freshly graded and un-vegetated areas. This is the first report following the repair work; therefore the as-built was modified during the repairs. Additional repair work is scheduled for 2005.

Channel bed, banks and riparian vegetation are in poor condition. Many areas of channel instability occur along the project. Vegetation success is well below success rate goals. Problem areas are to numerous to detail in the abstract. Likely causes of the instability include inadequate vegetation establishment prior to significant storm events, poor soil conditions/type, uneven floodplain grading leading to floodplain constriction, and low pool to pool spacing (tight meander geometry)

Macroinvertebrate assessment shows similar trend to reference conditions but continued bank degradation could further impair the project site. Continued study is necessary to draw conclusions.

II. <u>Project Background</u>

The following project background information was extracted from the as-built monitoring report written by Earth Tech and dated February 2003.

Beaver Creek project site consists of 4,670 linear feet of stream restoration. A tributary to the Fisher River, Beaver Creek (NCDWQ Stream Index Number – 12-63-12) is located on agricultural land southeast of the town of Dobson in Surry County, North Carolina. The watershed area for this project is 5.9 square miles. The project is fully contained within the property of five landowners.

The Surry County Soil and Water Conservation District (SCSWCD) staff first identified Beaver Creek as a potential restoration site after landowners complained about active erosion and flooding adjacent to the stream. The stream was actively eroding along a tight meander located within property owned by Mr. Mike Jones. The meander eroded to the point where the radius was so tight that water was overtopping the bank and flooding the adjacent landowners (Mr. Wayne Draughn) field during storm events.

Beyond the above stated problem area, Beaver Creek had other areas of significant active bank erosion throughout the proposed project limits. There is evidence of historic straightening and degradation resulting from this straightening. Thinning and removal of riparian vegetation had also accelerated the degradation process. The incised condition of the channel had accelerating the erosion process by forcing the channel to contain larger than bankfull storm events. One of the three tributaries, within the project limits, had also been straightened.

The restoration site is located entirely within undeveloped land consisting of agricultural land predominantly being used for hay production, woodland, and sparse crop production. There are no utilities within the project limits. All of these characteristics combined to make Beaver Creek an excellent restoration site. The project had the following goals and objectives:

1. Restore 4,220 linear feet of Beaver Creek (as measured along the thalweg).

- 2. Provide a stable stream channel that neither aggrades nor degrades while maintaining its dimension, pattern, and profile with the capacity to transport its watershed's water and sediment load.
- 3. Improve water quality and reduce further property loss by stabilizing eroding stream banks.
- 4. Reconnect the stream to its floodplain or establish a new floodplain at a lower elevation.
- 5. Improve aquatic habitat with the use of natural material stabilization structures such as root wads, rock vanes, woody debris and a riparian buffer.
- 6. Provide aesthetic value, wildlife habitat and bank stability through the creation or enhancement of a riparian zone.

The Priority I restoration involved converting the impaired channel into a sinuous channel that meanders for a total of 4,220 ft as measured along the thalweg. Rock and log cross-vanes and rootwads were incorporated for aquatic habitat enhancement and bed and bank stability. A 50-foot riparian buffer on either side of the stream was planted with native vegetation.

Figure 1 shows a map with detailed directions to the project site. Table I and II list project structure and objectives. Activities and reporting history for the project are listed in Table III. Table IV lists contacts

Table I. Project Structure						
Project Number and Name: 00005 (Beaver Creek)						
Segment/Reach ID	Segment/Reach ID Linear Feet or Acreage					
Beaver Creek	4220 linear feet					

Table II. Project Objectives Table									
Project Number and Name: 00005 (Beaver Creek)									
Segment/Reach ID Objectives Linear Feet or Comment									
	Acreage								
Beaver Creek Full Restoration 4,220 linear feet Priority 1 Approach									
Beaver Creek	Buffer Restoration	9.4 Acres	Buffer Replanting						

BIOLOGICAL & AGRICULTURAL ENGINEERING Weaver Labs Campus Box 7625 North Carolina State University Raleigh, NC 27695

PROJECT LOCATION MAP

DRN CHK

Table III. Project Activity and Reporting History Project Number and Name: 00005 (Beaver Creek)							
Activity or Report	Calendar Year of	Actual					
	Completion or	Completion					
	Planned Completion	Date					
Restoration Plan	2001	2001					
Mitigation Plan	2001	2001					
Construction	Fall 2002	Fall 2002					
Temporary S&E mix applied to entire project area	Fall 2002	Fall 2002					
As-Built report	Fall 2002	February-03					
Permanent seed mix applied to reach	Fall 2002	Fall 2002					
Containerized and B&B plantings for reach	N/A	N/A					
Structural maintenance (bank and structure repairs)	Spring 2004	Spring 2004					
Supplemental planting of bare root and containerized material	Spring 2004	Spring 2004					
Initial – Year 1 monitoring	Fall 2003	Sep-04					
Year 2 Monitoring	Aug-05						
Year 3 Monitoring	Aug-06						
Year 4 Monitoring	Aug-07						
Year 5 Monitoring	Aug-08						
Year 5+ Monitoring	Not Scheduled						

Table IV. Project Contact Table						
Project Number and Nat	me: 00005 (Beaver Creek)					
Designer	Earth Tech of North Carolina					
	701 Corporate Center Drive, Suite 475					
	Raleigh, NC 27607					
Primary project design POC	Mr. Bill Jenkins (919) 854-6200					
Construction Contractor	West Contracting					
	Post Office Box 310					
	Marble NC, 28905					
Construction contractor POC	Maurice West Jr. (828) 837-2280					
Planting Contractor	Carolina Environmental					
	Post Office Box 1905					
	Mount Airy NC, 27030					
Planting contractor POC	Joanne Cheatham (336) 320-3849					
Seeding Contractor	Carolina Environmental					
	Post Office Box 1905					
	Mount Airy NC, 27030					
Planting contractor point of contact	Joanne Cheatham (336) 320-3849					
Seed Mix Sources	N/A					
Nursery Stock Suppliers	N/A					
Monitoring Performers	Biological & Agricultural Engineering					
	North Carolina State University					
	Campus Box 7625					
	Raleigh, NC 27695					
Stream Monitoring POC	Dan Clinton (919) 515-6771					
Vegetation Monitoring POC	Dan Clinton (919) 515-6771					

Table V. Project Background Table							
Project Number: 00005 (Beaver Creek)							
Project County	Surry County						
Drainage Area	5.9 sq miles						
Drainage impervious cover estimate (%)	Estimated at <5%						
Stream Order	3rd order						
Physiographic Region	Piedmont/Foothills						
Ecoregion	Northern Inner Piedmont (45e)						
Rosgen Classification of As-built	E-Stream Type						
Cowardin Classification	N/A						
Dominant soil types	N/A						
Reference site ID	N/A						
USGS HUC for Project and Reference	3040101						
NCDWQ Sub-basin for Project and Reference	12-63-12						
NCDWQ classification for Project and Reference	C						
Any portion of any project segment 303d listed?	No						
Any portion of any project segment upstream of a 303d							
listed segment?	No						
Reasons for 303d listing or stressor	N/A						
% of project easement fenced	0% - No cattle						
Project County	Surry County						

100 0 50 100 0 50 100						
DATE 0 PROJECT NO. FILENAME BEAV SHEET NO. P SHEET NO. P DRAMING NO.	FIGURE 3C BEAVER CREEK SURRY COUNTY, N.C.	NC STATE UNIVERSITY	1 NITIAL DESIGN		DRC DAB	06/28/05
6/28/2005 FR OREEK.DWG	STREAM RESTORATION MONITORING PLAN VIEW	BIOLOGICAL & AGRICULTURAL ENGINEERING Weaver Labs Campus Box 7625 North Carolina State University Raleigh, NC 27695	NO	REVISIONS	DRN CHK	DATE

III. Project Condition and Monitoring Results

Monitoring results are shown below. 2004 Monitoring was conducted on September 10 and 11, 2004.

A. Vegetation Assessment

Using the <u>Draft Vegetation Monitoring Plan for NCWRP Riparian Buffer and Wetland</u> <u>Restoration Projects</u>, four vegetation monitoring plots randomly selected were surveyed for the 2004 monitoring season. No reference area was studied; therefore no comparisons could be made to reference conditions.

Vegetation within the riparian buffer of Beaver Creek varied in success. Much of the buffer is covered with new sediment from recent storms, but native herbaceous vegetation was dense in some areas. *Solidago* spp. (goldenrod) and *Juncus* spp. (rushes) are especially doing well throughout the area. Live stakes are marginally healthy in certain areas, although many have washed out during high flows and bank sloughing. Planted trees and shrubs are doing poorly throughout the entire buffer. In three of the four plots, no tree stems were counted. Although some stakes were found to be thriving, most stakes and trees had disappeared. Further, of the shrub and tree stems found alive throughout the site, most have been browsed. Overall, planted trees were found to be not successful.

Further, little to no natural regeneration was noted this year. Some very small (<15 cm) *Pinus virginiana* (Virginia pine) seedlings were noted, and appeared stressed. Overall, the area appeared to be subject to frequent disturbance keeping many areas in an early successional state.

Plot One contained 60% overall vegetation cover. Dominant plants included *Juncus* spp., *Carex* spp. (sedges), *Allium* spp. (wild onion), *Actaea* (baneberry), *Solanum* spp., *Microstegium vimineum* (Japanese stilt grass), and planted *Panicum clandestinum* (deer tongue) and *Panicum virgatum* (switch grass). Plot Two exhibited over 80% vegetation cover, including more invasives. Dominants included *Solidago* spp., *Rubus* spp. (blackberry), *Trifolium repens* (clover), *M. vimineum*, *Lonicera japonica* (Japanese honeysuckle), *Gnaphalium* spp. (rabbit tobacco), *Bidens* spp. (beggars ticks), and *Festuca* spp. (fescue). Plot Three had 80% vegetation cover also, with a bare area of sand and cobbles along the channel. Dominant plants included sedges, upland cress, *Solidago*, *Allium*, *P. virgatum*, and an unknown. Plot Four was typical of large areas of the buffer, conspicuous for recent overwash and sediment deposition. Plant cover was about 20%, primarily *Juncus* spp. Also present were *Panicum* spp., *Carex* spp., *Andropogon* spp., *Solidago* spp., and *L. japonica*. Dead stakes were present close to the channel.

Much deposition, overwash, and erosion have taken place since planting, and large areas originally impacted by construction have very little existing cover. However, the bank less impacted by construction has good cover of mature trees, providing bank stability and potential natural regeneration of trees.

Recommendations include replanting larger containerized trees to obtain mitigation requirements and staking in areas where erosion is problematic. Although invasive vegetation is not a major issue on this project site, exotic invasive species present include *M. vimineum, L. japonica,* and *Paulownia tomentosa* (princess tree). Control measures may be necessary if these species become dense. Finally, deer are an issue on this site. Measures should be taken to prevent deer browse of planted vegetation.

The following table summarizes vegetation and soils results for 2004 Monitoring. Preliminary soils data were not collected for this project. Please refer to the Beaver Creek Restoration Plan for soils information. Vegetation problem areas are summarized below in table VII. Raw vegetation data can be found in Appendix A. Data is summarized in Table VIII below. Photos were not taken of the vegetation plots but typical areas can be seen in the stream photo log.

Table VI. Preliminary Soil Data00005 - Beaver Creek									
Series Max % Clay K T OM									
	Depth	on			%				
	(in.)	Surface							
No soils data was collected as part of the monito	No soils data was collected as part of the monitoring period/ Please refer to restoration plan for soils								
information.									

Table VII. Vegetative Problem AreasBeaver Creek									
Feature/Issue Station # / Range Probable Cause Photo #									
	Studion # / Runge		I HOUG #						
Bare Bank	Throughout problem areas	Bank erosion	Example see						
		Storm deposition	SP13						
Bare Flood Plain	Sporadic through the site	Storm deposition	Example see						
			5110						
Invasive/Exotic Populations	Minimal locations not field identified	Existing or upland seed source	No photo taken						
			-						
Dead and missing	Throughout project	Storm deposition	No photo taken						
live stakes		Possible poor quality or installation							
		Deer browse							
Dead or missing	Sporadic through the site	Deer browse	No photo taken						
trees		Storm deposition							
		Possible poor quality or installation							

Table VIII: Stem counts for each species arranged by plot.									
Species	Plots	ots			Initial Totals	Year 1 Totals	Survival %		
	1	2	3	4					
Shrubs									
Salix sericea	3	4	0	0	Unknown	7	-		
Cornus amomum	1	1	0	0	Unknown	2	-		
Trees									
Alnus spp.	0	4	0	0	Unknown	4	-		
Pinus virginiana	0	6	0	0	Unknown	6	-		
Betula nigra	0	3	0	0	Unknown	3	-		

B. Stream Assessment

Overall the stream is not performing as designed. Repair work was completed in the fall of 2003. The following weekend an out of bank event occurred, heavily damaging the freshly graded and unvegetated areas. This is the first report following the repair work; therefore the as-built was modified during the repairs. Additional repair work is scheduled for 2005.

Channel dimension has changed very significantly in four (#1, 5, 6, and 7) of the six monitoring cross-sections. Enlargement in sections 5, 6 and 7 were directly related to the repair work conducted in 2003. Cross section 1 reduced the as-built area but was larger then designed when built. Cross-section 2 was added at station 3+80 to monitor active bank erosion. Significant bank erosion is occurring on sections 2 and 3. Many other areas of significant channel enlargement and bank erosion is occurring along the project. A plan view and photos of problem areas can be found in Appendix B.

Channel substrate has become finer in two of the three riffle sections. All of the pools have coarsened. Sediment being generated from the active bank erosion throughout the project is the likely cause.

Although, channel pattern measurements remain similar to design conditions, the active bank erosion will likely have an effect on that if not repaired. A new meander is beginning to form at station 22+50.

Channel profile has changed throughout the project. The most significant problem is downcutting most evident from stations 10+50 to 12+34 and 20+00 to 28+00. This can be seen in cross section 4 at station 11+30 and cross section 5 at station 24+50. Some migration of bedform has occurred between station 18+00 and 23+00 and between 30+00 and 37+00. Riffle-pool complexes have disappeared between stations 11+80 and 17+00 as well as between stations 27+10 and 28+90. New riffle-pool complexes have formed between 37+50 and 39+00. Overall the bed profile is in poor condition.

Likely causes of the instability include inadequate vegetation establishment prior to significant storm events, poor soil conditions/type, uneven floodplain grading leading to floodplain constriction, and low pool to pool spacing (tight meander geometry).

Table IX. Stream Problem Areas								
			i Name.					
Problem Number	Feature Issue	Station numbers	Suspected Cause	Photo number				
PA 1	Erosion and scour around root wads	3+60 to 4+20	Short riffle section upstream Floodplain constriction	SP1				
PA 2	Bank scour	8+10 to 8+30	Narrow vane configuration	511				
PA 3	Erosion and scour around root wads	8+80 to 9+20	Floodplain constriction Short riffle section upstream	SP2				
		10.00	Floodplain constriction	SP3-5				
PA 4	Piping through cross vane	10+60	Poor soils	SPo				
PA 5	Scour downstream of cross vane	11+10 to 11+30	Narrow bank graded below vane	SP7-8				
PA 6	Blowout around rootwad and cross vane	12+00 to 12+60	Poor vegetation establishment	SP9-10				
PA 7	Cutting around cross vane	13+50 to 13+80	Poor soils	51 /-10				
PA 8	Cutting around cross vane	14+30 to14+60	Floodplain constriction Floodplain constriction	SP11-14 SP15				
DA 0	Cutting anound log areas your	17+00 to 17+20						
FA 9	Cutting around log cross vane	17+00 to 17+20	Poor vegetation establishment	SP16				
PA 10	Bank Slumping Frosion around vane	18+10 to 18+30	Poor vegetation establishment	Similar to SP17				
PA 11	Bank scour and erosion	20+10 to 20+40	Poor vegetation establishmen	0015				
PA 12	Blowout around vane	22+20 to 22+80	Floodplain constriction Floodplain constriction	SP17 SP18-19				
DA 12	Dealessee	22 : 80 to 24 : 00	Poor meander geometry	Similar to				
PA 13	Bank scour	23+80 to 24+00	Floodplain constriction	Shimar to SP17				
PA 14	Cutting around cross vane	24+10 to 24+30	Floodplain constriction	Similar to SP15				
PA 15	Log vane moved	24+80 to 25+10	Floodplain constriction	SP20				
PA 16	Bank scour	27+10 to 27+20	Tight meander geometry	SP20 SP21-22				
PA 17	Cutting around single log vane	27+70 to 27+90	Floodplain constriction	Similar to				
PA 18	Bank scour	28+20 to 28+30	Improper backfilling behind vane	SP15 Similar to				
DA 40			Floodplain constriction	SP23				
PA 19	Bank scour from debris jam	28+90 to 29+10	Debris jam directing flows into bank	SP23				
PA 20	Scour in front or root wad	30+50 to 30+60	Inadequate number of root wads	SP24				
PA 21	Bank erosion	30+80 to 31+00	Floodplain constriction	SP24				
PA 22	Over wide	35+40 to 35+80	Poor construction	SP25				
PA 23	Lower bank scour	37+20 to 37+40	Poor vegetation establishmen	Similar to				
PA 24	Bare lower bank	39+20 to 39+40	Poor vegetation establishmen	SP26				
PA 25	Piping around vane	40+30 to 40+50	Poor soils Padaustar from Eicher Diver	SD27-28				
PA 26	Cutting around vane	40+90 to 41+10	Poor soils	5127-20				
			Backwater from Fisher River Poor vegetation establishmen	SP29				
PA 27	Bank scour	41+80 to 41+95	Poor soils	Cimilante				
	Bank slumping		Poor vegetation establishmen	Similar to SP30				
PA 28	Bank scour	42+00 to 42+30	Poor soils Backwater from Fisher River	SP30				
	Dank stumping		Poor vegetation establishment					

Table X. Baseline Morphology and Hydraulic Summary Project Number and Name: Segment/Reach;																		
Denometer	USG	S Gage	Data	Reg	ional C	urve	Pr	-Evist	inσ	Proje	ct Refe	rence	1	Design	<u>ו</u>		A s_built	
rarameter	050	5 Oage	Data	Reg		uive	11	C-LAISt	mg	110 0				Desigi	1		13-0u11	
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage o	lata is				Pleas	se refer t	ne the	Pleas	se refer t	he the	Pleas	se refer t	he the	21.9	33.6	
Floodprone Width (ft)	unav	ailable fo	or this				Beaver Creek Stream Beaver Creek Stream Beaver Creek Stream				313							
BE Cross Sectional Area (ft ²)		project					Mitigat	Mitigation Plan for Pre- Mitigation Plan for Mitigation Plan and		55.1	104.6							
BF Mean Depth (ft)		1 5					Exist	ing Cond	litions	Project	Reference	e Reach	Con	struction	Plan	2.6	3.1	
BF Max Depth (ft)							-	Data		3	Data		Sheets	for Desi	gn Data	4.3	5.2	
Width/Depth Ratio																9.8	10.8	
Entrenchment Ratio																9.4	12	
Wetted Perimeter(ft)																n/a	n/a	
Hydraulic radius (ft)																n/a	n/a	
Pattern																		
Channel Beltwidth (ft)																43	208	87
Radius of Curvature (ft)																45	76	65
Meander Wavelength (ft)																192	485	275
Meander Width ratio																		
Profile																		
Riffle length (ft)																n/a	n/a	n/a
Riffle slope (ft/ft)																n/a	n/a	n/a
Pool length (ft)																n/a	n/a	n/a
Pool spacing (ft)																n/a	n/a	n/a
Substrate																		
d50 (mm)																0.08	11.65	0.52
d84 (mm)																0.36	71.37	20.555
Additional Reach Parameters																		
Valley Length (ft)		3314																
Channel Length (ft)		4220																
Sinuosity		1.3																
Water Surface Slope (ft/ft)		0.50%																
BF slope (ft/ft)		n/a																
Rosgen Classification		E5																
Number of Bankfull Events		0																
Extent of BF floodplain (acres)		n/a																
*BEHI							ļ			ļ								
*Habitat Index																		
*Macrobenthos																		

* Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria

Table XI. Morphology and Hydraulic Monitoring Summary																					
Project Number and Name:																					
Segment/Reach:																					
Parameter	Cros	ss Sect	ion 1	Cros	s Sect	ion 2	Cros	s Sect	ion 3	Cros	s Sect	ion 4	Cros	s Sect	ion 5	Cros	s Sect	ion 6	Cros	s Sect	ion 7
	Statio	on 1+17	Riffle	Stati	on 3+80	Pool	Station 9+11 Pool Station 11+30 Riffle Stati		Station	24+50 P	Pool	Statio	n 34+34	Riffle	Stati	on 36+5) Pool				
Dimension	MY0	MY1	MY2	MY0	MY1	MY2	MY0	MY1	MY2	MY0	MY1	MY2	MY0	MY1	MY2	MY0	MY1	MY2	MY0	MY1	MY2
BF Width (ft)	33.6	29.1		N/A	29.1		27.4	24.6		33	32.9		21.9	48		25.7	34.6		22	38.2	
Floodprone Width (ft) (approx)	315	315								315	315					315	315				
BF Cross Sectional Area (ft ²)	104.6	86.8		N/A	110.6		75.2	78.2		103.8	108		55.1	125.8		67.4	93.6		66	95.2	
BF Mean Depth (ft)	3.1	2.7		N/A	3.8		2.7	3.2		3.1	3.3		2.5	2.6		2.6	2.7		3	2.5	
BF Max Depth (ft)	4.6	4.5		N/A	5.8		4.8	5.2		4.8	6.7		5	5.7		4.3	4.8		5.2	5.8	
Width/Depth Ratio	10.8	11.8								10.5	10					9.8	12.8				
Entrenchment Ratio	9.4	10.8								9.5	9.6					12.3	9.1				
Wetted Perimeter(ft)	n/a	n/a		n/a	n/a		n/a	n/a		n/a	n/a		n/a	n/a		n/a	n/a		n/a	n/a	
Hydraulic radius (ft)	n/a	n/a		n/a	n/a		n/a	n/a		n/a	n/a		n/a	n/a		n/a	n/a		n/a	n/a	
Substrate																					
d50 (mm)	3.93	1.13		N/A	0.36		0.14	0.44		11.65	0.55		0.94	5.25		0.11	0.36		0.08	0.36	
d84 (mm)	71.37	45.32		N/A	27.88		16.48	21.7		38.5	22.02		24.63	38.5		0.36	27.88		0.5	27.88	
Parameter	MY	2-00 (20	002)	MY	-01 (20	01 (2004)		MY-02 (2005)		MY	-03 (20)06)	MY	-04 (20	007)	MY	2-05 (20	008)			
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med			
Channel Beltwidth (ft)	43	208	87	39	192	80															
Radius of Curvature (ft)	45	76	65	42	170	90															
Meander Wavelength (ft)	192	485	275	182	481	267															
Meander Width ratio			- / *																		
Profile																					
Riffle length (ft)				12	408	69															
Riffle slope (ft/ft)				0.00	0.038	0.005															
Pool length (ft)				32	246	90.5															
Pool spacing (ft)				69.5	242 5	177.5															
				07.5	272.3	1//.5															
Additional Reach Parameters																					
Valley Length (ft)									2	214											
Valley Length (It)		4000			4100				3.	514			1								
Channel Length (ft)		4220			4198																
Sinuosity		1.5			1.5																
water Surface Slope (ft/ft)		0.50%			0.53%																
BF slope (ft/ft)		n/a			0.54%																
Kosgen Classification		E3			E3																
Number of Bankfull Events		0		Ap	roximet	y 3															
Extent of BF floodplain (area)		n/a			n/a																
BEHI*																					
Habitat Index*																					
Macrobenthos*																					

C. Benthic Macroinvertebrate Assessment

Two full scale samples were collected from Beaver Creek prior to and one year following restoration. Unfortunately samples were collected from very different seasonal time periods, which did account for significant differences in the fauna between investigations. An upstream site (reference) was located approximately 50 meters above the restoration reach and a downstream site (Station 1) was located near the end and within the restoration reach. Both stations had a well-developed riparian canopy (somewhat less so downstream) and fairly stable banks. There were some areas where the banks were eroding, but overall both stations looked relatively stable. The reference was in a more stable reach with large bedrock outcrops but had lots of fine sediments in the pools, which suggests that there are catchment-wide problems with erosion. The stability of this site was reflected in the higher abundance values of many EPT taxa (Epeorus, other Heptageniids, Isonychia) and Elimia relative to the downstream location. The collection location within in the restored reach is at transect 32+20 near an old wooden bridge. The EPT taxa richness and abundance values were very high at this location during the preconstruction survey. Interestingly the DIC metric only noted a 62% comparison between these two locations and that the downstream (restored) reach had 15 keystone species.

Metric/Site	Refe	erence Reach	Restored Reach				
Year of Collection	April 2002	June 2004	April 2002	June 2004			
Total Taxa Richness	98	58	111	60			
EPT Taxa Richness	42	31	40	31			
EPT Abundance	195	155	147	151			
Dominant in Common	-	-	62%	64%			
Index (%)							
# Keystone Species	16	14	15	11			

Table XII. Summary statistics from the stream restoration project at Beaver Creek (Surry County).

The first post-construction survey was conducted during June 2004. Large differences in population structure within many groups were noted during this survey due to season variability. These groups include the caddisflies (13 and 14 taxa in 2002 and 8 and 9 taxa in 2004), stoneflies (12 and 8 taxa in 2002 and only 5 at both sites in 2004) and chironomidae (27 and 33 taxa in 2002 and 9 and 11 in 2004). These seasonal differences make direct comparison of the data difficult between surveys; however, post-construction data did note similar DIC percentages (64% vs 62% during the preconstruction survey) and the presence of 11 keystone taxa. These data suggest that fauna of downstream reach of Beaver Creek have recolonized rapidly following restoration. However many taxa were not collected, or reduced in abundance, at the downstream reach during the 2004 investigation (i.e. <u>Epeorus</u>, <u>Rhyacophila</u> and <u>Elimia</u>) and many more grazing taxa (especially Baetidae) were found within this reach. Additional information will be collected from this project in 2005.

IV. <u>Methodology Section</u>

Monitoring methods used are based on US Army Corps of Engineering and NC Division of Water Quality Guides as referenced below.

References:

USACOE (2003) Stream Mitigation Guidelines. USACOE, USEPA, NCWRC, NCDENR-DWQ

Rosgen, D L. (1996) Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, CO.

APPENDIX A

Vegetation Raw Data

1. Vegetation Survey Data Tables

Beaver Creek Stream Restorat	ion								
Surry County, NC									
		Quad 1							
Location of plot corner (at chan	nel edae on upstre	eam end of plot)							
N 36° 21.760'									
W 80° 40.186'									
Tree Stratum									
Species	Height (cm)	Diameter (mm)	Radius (mm)	ΣX-sec. (mm ²)	Rel. x-sec (%)	Density	Rel. Density (%)	Rank (Importance)	Average
no trees present									
Total Trees per acre						0			
Planted trees per acre						0			
Natural regen. trees per acre						0			
Chrub Stratum									
	0	D al. a avera (0()	Density	Del Demeitre (0/)	Develo (large enterness)				
Species	<u>Cover (%)</u>	<u>Rel. cover (%)</u>	Density	Rel. Density (%)	Kank (Importance)				
Cornus amomum	1	98%	3	/5	1				
Salix sericea	0.02	2%	1	25	2				
lotal	1.02	100%	4	100					
Herb Stratum									
Species	Cover (%)	Rel. cover (%)	Rank (Importance)						
Rubus spp.	5	12.5	4						
Solidago spp.	10	25.0	1						
Moss	3	7.5	5						
Winter annual unk. 1	10	25.0	2						
Winter annual unk. 1	10	25.0	3						
Aster spp.	2	5.0	6						
Total	40	100.0							

Beaver Creek Stream Restoration	on								
Surry County, NC									
		Quad 2							
Location of plot corner (at chann	nel edge on upstre	eam end of plot)							
N 36° 21.779'									
W 80° 40.134'									
Tree Stratum								1	
Species	Height (cm)	Diameter (mm)	Radius (mm)	ΣX-sec. (mm ²)	Rel. x-sec (%)	Density	Rel. Density (%)	Rank (Importance)	Average
Alnus spp.						4	30.8%	2	
Pinus virginiana						6	46.2%	1	
Betula nigra						3	23.1%	3	i -
Overall Total						13		<u> </u>	
Total Trees per acre						520		<u> </u>	
Planted trees per acre						120		İ	
Natural regen. trees per acre						400			
Shrub Stratum									
Species	Cover (%)	Rel. cover (%)	Density	Rel. Density (%)	Rank (Importance)				
Salix sericea	3	86%	4	80	1				
Cornus amomum	0.5	14%	1	20	2				
Total	3.5	1.0	5	i 100					
Herb Stratum								1	
Species	Cover (%)	Rel. cover (%)	Rank (Importance)						
Viola spp.	15	16.7							
Solidago spp.	60	66.7							
Lactuca spp.	15	16.7							
Total	90	100.0						1	

Beaver Creek Stream Restoration	n								
Surry County, NC									
		Quad 3							
Location of plot corner (at chann	el edge on upstre	am end of plot)							
N 36° 21.733'									
W 80° 40.291'									
Tree Stratum									
Species	Height (cm)	Diameter (mm	Radius (mm)	ΣX-sec. (mm ²)	Rel. x-sec (%)	Density	Rel. Density (%)	Rank (Importance)	Average
no trees observed									
Overall Total									
Total Trees per acre						0			
Planted trees per acre						0			
Natural regen. trees per acre						0			
Shrub Stratum									
Species	Cover (%)	Rel. cover (%)	Density	Rel. Density (%)	Rank (Importance)				
no shrubs observed	<u></u>		<u></u>	<u></u>	<u></u>				
Herb Stratum									
Species	Cover (%)	Rel. cover (%)	Rank (Importance)						
Carex spp.	35	38.9	2						
Panicum spp.	55	61.1	1						
Total	90	100.0							

Beaver Creek Stream Restoration	on								
Surry County, NC									
		Quad 4							
Location of plot corner (at chann	nel edge on upstre	eam end of plot)							
N 36° 21.678'									
W 80° 40.445'									
Tree Stratum									
Species	Height (cm)	Diameter (mm)	Radius (mm)	ΣX-sec. (mm ²)	<u>Rel. x-sec (%)</u>	<u>Density</u>	Rel. Density (%)	Rank (Importance)	<u>Average</u>
no trees observed									
Total Trees per acre						C)		
Planted trees per acre						C)		
Natural regen. trees per acre						C)		
Shrub Stratum									
Species	Cover (%)	Rel. cover (%)	Density	Rel. Density (%)	Rank (Importance)				
no shrubs									
Herb Stratum									
Species	<u>Cover (%)</u>	<u>Rel. cover (%)</u>	Rank (Importance)						
Juncus spp.	20	100.0	1						
Total	20	100.0							

APPENDIX B

Morphology Raw Data

- 1. Problem Area Plan View
- 2. Representative Stream Problem Area Photos
- 3. Stream Photo-station Photos
- 4. Cross section Plots and Raw Data Tables
- 5. Longitudinal Plots and Raw Data Tables
- 6. Pebble Count Plots and Raw Data Tables

100 0 50 100 0 50 100						
DATE O PROJECT NO. FILENAME BEAVI SHEET NO. P DRAMING NO.	FIGURE B-3 BEAVER CREEK SURRY COUNTY, N.C.	NC STATE UNIVERSITY	1 NITIAL DESIGN		DRC DAB	06/28/05
5/28/2005 :R CREEK.DWG 3	STREAM RESTORATION MONITORING PLAN VIEW	BIOLOGICAL & AGRICULTURAL ENGINEERING Weaver Labs Campus Box 7625 North Carolina State University Raleigh, NC 27695	NO	REVISIONS	DRN CHK	DATE

2004 Problem Area Photos

Beaver Creek Stream Restoration Surry County, North Carolina

SP1. Station 3+60 to 4+20 Erosion and scour around root wads

SP2. Station 8+10 to 8+30 Bank scour

SP3. Station 8+80 to 9+20 Erosion and scour around root wads

SP4. Station 8+80 to 9+20 Erosion and scour around root wads

SP5. Station 8+80 to 9+20 Erosion and scour around root wads

SP6. Station 10+60 Piping through cross vane

SP7. Station 11+10 to 11+30 Scour downstream of cross vane

SP8. Station 11+10 to 11+30 Scour downstream of cross vane

SP9. Station 12+00 to 12+60 Blowout around root wad and cross vane

SP10. Station 12+00 to 12+60 Blowout around root wad and cross vane

SP11. Station 13+50 to 13+80 Cutting around cross vane

SP12. 2002 Photo Station 13+50 to 13+80 Cutting around cross vane

SP13. 2002 Station 13+50 to 13+80 Cutting around cross vane

SP14. 2002 Station 13+50 to 13+80 Cutting around cross vane

SP15. Station 14+30 to 14+60 Cutting around cross vane

SP16. Station 17+00 to 17+20 Cutting around log cross vane

SP17. Station 20+10 to 20+40 Bank scour and erosion

SP18. Station 22+20 to 22+80 Blowout around vane

SP19. Station 22+20 to 22+80 Blowout around vane

SP20. Station 24+80 to 25+10 Log vane moved

SP22. 2002 photo Station 27+10 to 27+20 Point bar scour

SP23. Station 28+90 to 29+10 Bank scour from debris jam

SP24. Station 30+50 to 31+00 Scour in front of root wad and bank erosion

SP25. Station 35+40 to 35+80 Over wide

SP26. Station 39+20 to 39+40 Bare lower bank

SP27. Station 40+30 to 40+50 Piping around vane

SP28. 2002 Problem Photo 40+50

SP29. Station 40+90 to 41+10 Cutting around vane

SP30. Station 42+00 to 42+30 Bank scour and bank slumping

2004 Photo Reference Points

Beaver Creek Stream Restoration Surry County, North Carolina

2002-As-built

2004

Photo 1. Beginning of the project looking upstream

Photo 2. Beginning of the project looking downstream

Photo 3. Station 1+17 Cross section 1. Upstream

Photo 4. Station 1+17 Cross section 1. Downstream

Photo 5. Station 1+17 Cross section 1. Left Bank

As-built Photo Missing Right Bank

As-built Photo Missing Right Bank Photo 6. Station 1+17 Cross section 1. Right Bank

New cross-section

Photo 7. Station 3+80 Cross section 2. Downstream

New cross-section

Photo 8. Station 3+80 Cross section 2. Upstream

New cross-section

Photo 9. Station 3+80 Cross section 2. Left Bank

New cross-section

Photo 10. Station 3+80 Cross section 2. Right Bank

Photo 11. Station 9+11 Cross section 3. Downstream

Photo 12. Station 9+11 Cross section 3. Upstream

Photo 13. Station 9+11 Cross section 3. Left Bank

Photo 14. Station 9+11 Cross section 3. Right Bank

Photo 15. Station 11+30 Cross section 4. Downstream

Photo 16. Station 11+30 Cross section 4. Upstream

Photo 17. Station 11+30 Cross section 4. Right Bank

Photo 18. Station 11+30 Cross section 4. Left Bank

Photo 19. Station 24+50 Cross section 5. Downstream

Photo 20. Station 24+50 Cross section 5. Upstream

Photo 21. Station 24+50 Cross section 5. Left Bank

Photo 22. Station 24+50 Cross section 5. Right Bank

Photo 23. Station 34+34 Cross section 6. Downstream

Photo 24. Station 34+34 Cross section 6. Upstream

Photo 25. Station 34+34 Cross section 6. Left Bank

Photo 26. Station 34+34 Cross section 6. Right Bank

Photo 27. Station 36+50 Cross section 7. Downstream

Photo 28. Station 36+50 Cross section 7. Upstream

Photo 29. Station 36+50 Cross section 7. Left Bank

Photo 30. Station 36+50 Cross section 7. Right Bank

No as built photo

Photo 31. End of the project looking downstream

No as built photo

Photo 32. End of the project looking upstream

Project Name Cross Section Feature Date Crew	Beaver Creek X1 - Station 1+17 Riffle 10/20/2004 Dan Clinton, Davi	Old Station : d Bidelspach	51+10					
		000		1	24	004		
	2 As-Bui	002 lt Survey			2004 \$	004 Survev		
Station	Adj Sta	Elev	Notes	Station	Elev	Adj Elev	Notes	
0+02	5.91	964.47	Ex. Bank	0+04	104.42	964.42	xsp	
0+04	7.91	964.23	Ex. Bank	0+10	103.45	963.45	xs	
0+07	10.91	963.59	LTOB/Ex. Bank	0+15	104.36	964.36	XS	
0+09	12.91	962.54	Ex. Bank	0+17	99.75	959.75	XS	
0+10	15.01	961.04	Ex Bank	0+27	98.21	958.21	xs	
0+13	16.91	959.97	Ex. Bank	0+35	99.08	959.08	xs	
0+14	17.91	959.48		0+39	100.41	960.41	xs	
0+15	18.91	958.35		0+44	100.40	960.4	XS	
0+16	19.41	958.18	LEW/WS	0+48	102.09	962.09	xs	the second se
0+16	20.11	957.91		0+55	102.08	962.08	XS	
0+18	21.71	957.80		0+56	102.85	962.85	xsp	
0+21	24.91 26.61	957.72	TW	0+70	103.07	964.00	XS	
0+26	29.61	957.66	1 17	0+80	104.99	965.37	XS	A STATE AND A STAT
0+27	31.21	958.04		1+11	107.27	967.27	xs	
0+28	31.81	958.16	REW/WS	1+12	107.12	967.12	xs	
0+29	32.91	958.33						Cross-Section #1 - Looking Downstream
0+30	34.31	958.13						
0+32	35.71	958.67		0.57	104.57	0.64.57		D 16 H (
0+36	40.21	958.85		0+57	104.57	964.57	xsp	Banktull Area
0+38	41.91	959.89						Area 104.6 86.8
0+44	47.41	961.99	RBKF					Width 33.6 32.0
0+46	50.21	962.18				1		Mean Depth 3.1 2.7
0+52	56.21	962.50	RPIN Grd					Max Depth 4.6 4.5
0+58	61.91	962.69						w/d ratio 10.8 11.8
0+65	68.91	962.75	Toe Slope					
0+73	76.91	964.93	Top Terrace					
0+80	83.91	966.06						
0+52	56.21	962.69	Top RPIN					
			[F					
968.91					Cı	ross-Sec Beav Stat	tion #1 er Crea ion 1+1	Riffle x
10 966.88 - El					Bankfull	Elev. (appro	ox.)	
iq. 964.85 -							\rightarrow	
· · · · · · · · · · · · · · · · · · · ·								
5 960 79 -								
evation of the second sec						_		
i∰ 958.76 -								
956.73 -								
0.0	DO	10.00	20.00		30.00		40.00	50.00 60.00 70.00 80.00
							Distance (f	t)
					_	— As-Built	Survey	

Project Name	Beaver Creek
Cross Section	X1 - Station 1+17
Feature	Riffle
Date	10/20/04
Crew	Shaffer, Bidelspach
Cross Section #1	

Cross	Section	Ħ.
Danala	Crook	

Brush Creek			As-Built		2004					
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	
Silt/Clay	silt/clay	0.061	6	6.0%	6.0%	0	7	5.8%	5.8%	
	very fine sand	0.062	12	12.0%	18.0%	3	18	17.5%	23.3%	
	fine sand	0.125	20	20.0%	38.0%	5	16	17.5%	40.8%	
Sand	medium sand	0.25	4	4.0%	42.0%	1	9	8.3%	49.2%	
	course sand	0.50	0	0.0%	42.0%	0	0	0.0%	49.2%	
	very course sand	1.0	2	2.0%	44.0%	2	0	1.7%	50.8%	
	very fine gravel	2.0	4	4.0%	48.0%	2	0	1.7%	52.5%	
C	fine gravel	4.0	4	4.0%	52.0%	5	0	4.2%	56.7%	
G	fine gravel	5.7	4	4.0%	56.0%	6	0	5.0%	61.7%	
1	medium gravel	8.0	4	4.0%	60.0%	5	0	4.2%	65.8%	
a	medium gravel	11.3	0	0.0%	60.0%	4	0	3.3%	69.2%	
v	course gravel	16.0	2	2.0%	62.0%	4	0	3.3%	72.5%	
e	course gravel	22.6	4	4.0%	66.0%	3	0	2.5%	75.0%	
1	very course gravel	32	4	4.0%	70.0%	1	0	0.8%	75.8%	
	very course gravel	45	8	8.0%	78.0%	23	0	19.2%	95.0%	
	small cobble	64	8	8.0%	86.0%	4	0	3.3%	98.3%	
Cabbla	medium cobble	90	4	4.0%	90.0%	0	0	0.0%	98.3%	
Cobble	large cobble	128	8	8.0%	98.0%	1	0	0.8%	99.2%	
	very large cobble	180	2	2.0%	100.0%	1	0	0.8%	100.0%	
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	
TOTA	TOTAL / %of whole count		100	100.0%		70	50	100.0%		

	d16	d35	d50	d84	d95
As-Built	0.09	0.17	3.93	71.37	137.13
2004	0.08	0.16	1.13	45.32	54.50

Project Name	Beaver Creek
Cross Section	X2 - Station 3+80
Feature	Pool
Date	10/20/04
Crew	Shaffer, Bidelspach

		As-Built				2004			
Description	Material	Size (mm)	Pool	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %
Silt/Clay	silt/clay	0.061				0	5	4.8%	4.8%
	very fine sand	0.062				0	0	0.0%	4.8%
	fine sand	0.125				4	20	23.1%	27.9%
Sand	medium sand	0.25				5	20	24.0%	51.9%
	course sand	0.50				6	0	5.8%	57.7%
	very course sand	1.0				0	0	0.0%	57.7%
	very fine gravel	2.0				0	0	0.0%	57.7%
G	fine gravel	4.0				1	0	1.0%	58.7%
G r	fine gravel	5.7				8	0	7.7%	66.3%
1	medium gravel	8.0				3	0	2.9%	69.2%
a V	medium gravel	11.3				7	0	6.7%	76.0%
v	course gravel	16.0				2	0	1.9%	77.9%
e	course gravel	22.6	Not Sample	d - New Cros	s-section	6	0	5.8%	83.7%
1	very course gravel	32				7	0	6.7%	90.4%
	very course gravel	45				5	0	4.8%	95.2%
	small cobble	64				3	0	2.9%	98.1%
Cabble	medium cobble	90				1	0	1.0%	99.0%
Coppie	large cobble	128				1	0	1.0%	100.0%
	very large cobble	180				0	0	0.0%	100.0%
	small boulder	256				0	0	0.0%	100.0%
	small boulder	362				0	0	0.0%	100.0%
Boulder	medium boulder	512				0	0	0.0%	100.0%
	large boulder	1024				0	0	0.0%	100.0%
	very large boulder	2049					0	0.0%	100.0%
Bedrock	bedrock	40096				0	0	0.0%	100.0%
TOTA	L / %of whole count		0	100.0%		59	45	100.0%	

	d16	d35	d50	d84	d95
As-Built	0.00	0.00	0.00	0.00	0.00
2004	0.14	0.24	0.36	27.88	53.86

Project Name	Beaver Creek
Cross Section	X3 - Station 9+11 Old Station 47+12
Feature	Pool
Date	10/20/2004
Crew	Dan Clinton, David Bidelspach

Station Elev Notes 0+10.4 939.91 xs 0+22.0 939.46 xs			uilt Survey	As-B	
0+10.4 939.91 xs 0+22.0 939.46 xs	Notes	Adj Elev	Elev	Adj Sta	Station
0+22.0 939.46 xs		939.61	959.30	22.00	0+00.0
	Wood Stake Grd	939.71	959.40	26.50	0+04.5
0+26.9 939.84 xsp		939.85	959.54	28.50	0+06.5
0+27.8 939.83 xs		939.48	959.17	31.00	0+09.0
0+31.2 939.4 xs		939.70	959.39	33.00	0+11.0
0+33.1 939.58 xs		937.59	957.28	36.30	0+14.3
0+34.8 938.35 xs	LBKF-calc	937.30	956.99	36.60	0+14.6
0+36.3 935.87 xs		936.55	956.24	37.20	0+15.2
0+37.6 933.67 xs		935.81	955.50	38.40	0+16.4
0+38.8 932.92 xs	LEW/WS	934.44	954.13	40.00	0+18.0
0+41.9 932.1 xs		934.01	953.70	40.50	0+18.5
0+47.0 932.94 xs		932.89	952.58	41.90	0+19.9
0+51.5 933.78 xs		932.62	952.31	43.50	0+21.5
0+52.3 934.25 xs	TW	932.46	952.15	44.20	0+22.2
0+55.0 935.47 xs		932.82	952.51	46.60	0+24.6
0+58.2 937.23 xs		933.74	953.43	49.00	0+27.0
0+59.1 937.54 xs		933.93	953.62	51.20	0+29.2
0+62.5 937.44 xs	REW/WS	934.40	954.09	52.70	0+30.7
0+73.1 938.02 xsp		934.90	954.59	55.00	0+33.0
0+81.4 938.21 xs		935.45	955.14	58.70	0+36.7
0+96.5 937.88 xs		936.05	955.74	61.00	0+39.0
1+17.6 937.71 xs		936.39	956.08	62.00	0+40.0
1+24.9 937.32 xs		936.90	956.59	63.00	0+41.0
1+27.0 939.1 xs	RBKF	937.30	956.99	64.00	0+42.0
1+42.2 939.43 xs		937.44	957.13	67.00	0+45.0
	RPIN Grd	938.07	957.76	73.10	0+51.1
		938.15	957.84	74.00	0+52.0
		938.10	957.79	85.00	0+63.0
		937.83	957.52	110.00	0+88.0
		938.03	957.72	120.00	0+98.0
				22.00	
		0.00.10	057.01	72 10)+51 1

Cross-Section #3 - Looking Downstream

2004 78.2 24.6 3.2 5.2

Bankfull Area

Area Width Mean Depth Max Depth As-Built 75.2 27.4 2.7 4.8

Project Name	Beaver Creek
Cross Section	X3 - Station 9+11
Feature	Pool
Date	10/20/04
Crew	Shaffer, Bidelspach

			As-Built			20	004		
Description	Material	Size (mm)	Pool	%	Cum %	Pool - Bed	Pool Bank	%	Cum %
Silt/Clay	silt/clay	0.061	24	24.0%	24.0%	0	13	10.8%	10.8%
	very fine sand	0.062	16	16.0%	40.0%	3	8	9.2%	20.0%
	fine sand	0.125	22	22.0%	62.0%	7	3	8.3%	28.3%
Sand	medium sand	0.25	6	6.0%	68.0%	8	16	20.0%	48.3%
	course sand	0.50	6	6.0%	74.0%	12	0	10.0%	58.3%
	very course sand	1.0	0	0.0%	74.0%	10	0	8.3%	66.7%
	very fine gravel	2.0	0	0.0%	74.0%	2	0	1.7%	68.3%
G	fine gravel	4.0	0	0.0%	74.0%	3	0	2.5%	70.8%
r	fine gravel	5.7	0	0.0%	74.0%	6	0	5.0%	75.8%
-	medium gravel	8.0	2	2.0%	76.0%	1	0	0.8%	76.7%
a	medium gravel	11.3	4	4.0%	80.0%	4	0	3.3%	80.0%
v	course gravel	16.0	8	8.0%	88.0%	3	0	2.5%	82.5%
e	course gravel	22.6	2	2.0%	90.0%	6	0	5.0%	87.5%
1	very course gravel	32	6	6.0%	96.0%	9	0	7.5%	95.0%
	very course gravel	45	0	0.0%	96.0%	2	0	1.7%	96.7%
	small cobble	64	4	4.0%	100.0%	4	0	3.3%	100.0%
Cabble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%
Condie	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAI	L / %of whole count		100	100.0%		80	40	100.0%	

	d16	d35	d50	d84	d95
As-Built	0.00	0.08	0.14	16.48	36.63
2004	0.08	0.25	0.44	21.70	38.50

Project Name Cross Section Feature Date Crew	Beaver Creek X4 - Station 11+30 Riffle 10/20/2004 Dan Clinton, Dav	0 id Bidelspach	Old Station 41+10			
	200 A - Decile)2		2	2004	
Station	As-Built Adi Sta	Survey	Notes	Station	J04 Survey Flay Notes	
0+00.0	41 00	958.17	Notes	0+11.7	958 33 ys	
0+07.6	48.60	958.33	Wooden Stake	0+27.1	957.75 xs	
0+12.0	53.00	958.21		0+40.9	958.24 xs	
0+13.2	54.20	957.98	LBKF	0+41.1	958.34 xsp	
0+14.0	55.00	957.49	LBKF-Calc	0+53.0	958.24 bkf	
0+16.0	57.00	956.34		0+57.2	956.05 xs	
0+19.0	60.00	954.54	-	0+62.7	955.12 xs	
0+21.0	62.00	954.15		0+62.9	954.62 xs	
0+23.0	65.30	953.89	-	0+69.2	950.82 XS	
0+24.3	67.20	953.27		0+77.3	951.73 xs	
0+27.0	68.00	953.16	LEW/WS	0+78.8	954.07 xs	
0+28.6	69.60	952.77	EEMAD	0+82.1	956.51 xs	
0+29.4	70.40	952.71	TW	0+85.9	957.18 bkf	E. C.
0+31.5	72.50	952.77		0+88.7	956.38 xs	
0+33.3	74.30	952.78		0+98.0	957.64 xs	
0+35.5	76.50	953.17	REW/WS	0+98.3	957.7 xsp	
0+37.0	78.00	953.78		0+98.6	957.72 xsp	Cross-Section #4- Looking Upstream
0+38.6	79.60	954.15		1+21.0	957.82 xs	
0+40.1	81.10	954.43		1+43.0	957.82 xs	
0+42.7	83.70	955.51		1+49.3	958.5 xs	Bankfull Area
0+45.2	80.20	956.09	+	ł +		As-Built 2004
0+40.3	88.00	950.98	PBKE	1 1		Width 33.0 32.0
0+48.0	89.00	957.25	KDKI	1 1		Mean Depth 31 33
0+52.0	93.00	957.55		1 1		Max Depth 4.8 6.7
0+57.0	98.00	957.58	RPIN Grd			w/d ratio 10.5 10.0
0+66.0	107.00	957.64				
0+75.0	116.00	957.47				
0+57.0	98.00	957.64	Top RPIN			
					Cross-	ection #4 - Diffle
					C1055-	aven Cheel
					D	aver Creek Bankfull Elev. (approx.)
					S	ition 11+30 /
050.20						
939.23	, <u> </u>		-			
						
957.18	8					
eet						
ર્સ કે 955.07	7			<u> </u>		
itrs			•			A A A A A A A A A A A A A A A A A A A
E 2 952.96	5			X _	**	
a						2
≅ 950.86	5					
948.75	5					
240.72	40.00	50.00	60.0	D	70.00	80.00 90.00 100.00 110.00 120.00
						Distance (feet)
						uilt Survey – 2004 Survey

Project Name	Beaver Creek
Cross Section	X4 - Station 11+30
Feature	Riffle
Date	10/20/04
Crew	Shaffer, Bidelspach

			As-Built		2003				
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	6	6.0%	6.0%	0	1	0.9%	0.9%
	very fine sand	0.062	8	8.0%	14.0%	1	8	8.2%	9.1%
	fine sand	0.125	16	16.0%	30.0%	3	6	8.2%	17.3%
Sand	medium sand	0.25	4	4.0%	34.0%	7	20	24.5%	41.8%
	course sand	0.50	8	8.0%	42.0%	4	15	17.3%	59.1%
	very course sand	1.0	0	0.0%	42.0%	3	0	2.7%	61.8%
	very fine gravel	2.0	0	0.0%	42.0%	1	0	0.9%	62.7%
C	fine gravel	4.0	0	0.0%	42.0%	1	0	0.9%	63.6%
G	fine gravel	5.7	2	2.0%	44.0%	6	0	5.5%	69.1%
r	medium gravel	8.0	4	4.0%	48.0%	2	0	1.8%	70.9%
a	medium gravel	11.3	4	4.0%	52.0%	2	0	1.8%	72.7%
v	course gravel	16.0	6	6.0%	58.0%	9	0	8.2%	80.9%
e	course gravel	22.6	14	14.0%	72.0%	10	0	9.1%	90.0%
1	very course gravel	32	12	12.0%	84.0%	4	0	3.6%	93.6%
	very course gravel	45	6	6.0%	90.0%	5	0	4.5%	98.2%
	small cobble	64	6	6.0%	96.0%	1	0	0.9%	99.1%
Cabble	medium cobble	90	0	0.0%	96.0%	1	0	0.9%	100.0%
Cobble	large cobble	128	4	4.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAI	L / %of whole count		100	100.0%		60	50	100.0%	

	d16	d35	d50	d84	d95
As-Built	0.11	0.42	11.65	38.50	73.25
2003	0.17	0.32	0.55	22.02	43.30

Project Name	Beaver Creek
Cross Section	X5 - Station 24+50
Feature	Pool
Date	10/20/04
Crew	Shaffer, Bidelspach

			As-Built			2	004		
Description	Material	Size (mm)	Pool	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	16	16.0%	16.0%	0	6	6.0%	6.0%
	very fine sand	0.062	14	14.0%	30.0%	0	0	0.0%	6.0%
	fine sand	0.125	14	14.0%	44.0%	0	13	13.0%	19.0%
Sand	medium sand	0.25	2	2.0%	46.0%	0	24	24.0%	43.0%
	course sand	0.50	2	2.0%	48.0%	6	1	7.0%	50.0%
	very course sand	1.0	8	8.0%	56.0%	0	0	0.0%	50.0%
	very fine gravel	2.0	4	4.0%	60.0%	0	0	0.0%	50.0%
G	fine gravel	4.0	2	2.0%	62.0%	0	1	1.0%	51.0%
	fine gravel	5.7	6	6.0%	68.0%	0	0	0.0%	51.0%
r	medium gravel	8.0	4	4.0%	72.0%	2	3	5.0%	56.0%
a	medium gravel	11.3	4	4.0%	76.0%	3	1	4.0%	60.0%
v	course gravel	16.0	4	4.0%	80.0%	4	4	8.0%	68.0%
e	course gravel	22.6	6	6.0%	86.0%	0	5	5.0%	73.0%
1	very course gravel	32	8	8.0%	94.0%	5	6	11.0%	84.0%
	very course gravel	45	4	4.0%	98.0%	8	5	13.0%	97.0%
	small cobble	64	2	2.0%	100.0%	1	1	2.0%	99.0%
Cabbla	medium cobble	90	0	0.0%	100.0%	1	0	1.0%	100.0%
CODDIe	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAI	L / %of whole count		100	100.0%		30	70	100.0%	

	d16	d35	d50	d84	d95
As-Built	0.06	0.13	0.94	24.63	42.50
2004	0.17	0.31	5.25	38.50	52.04

Project Name	Beaver Creek	
Cross Section	X6 - Station 34+34	Old Station 18+50
Feature	Riffle	
Date	10/20/2004	
Crew	Dan Clinton, David Bidelspach	

Cross-Section #6 - Looking Upstream

Bankfull Area								
	As-Built	2004						
Area	67.4	93.6						
Width	25.7	34.6						
Mean Depth	2.6	2.7						
Max Depth	4.3	4.8						
w/d ratio	9.8	12.8						

Project Name	Beaver Creek
Cross Section	X6 - Station 34+34
Feature	Riffle
Date	10/20/04
Crew	Shaffer, Bidelspach

			As-Built				2004		
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	24	24.0%	24.0%	0	5	4.8%	4.8%
	very fine sand	0.062	22	22.0%	46.0%	0	0	0.0%	4.8%
	fine sand	0.125	18	18.0%	64.0%	4	20	23.1%	27.9%
Sand	medium sand	0.25	22	22.0%	86.0%	5	20	24.0%	51.9%
	course sand	0.50	2	2.0%	88.0%	6	0	5.8%	57.7%
	very course sand	1.0	0	0.0%	88.0%	0	0	0.0%	57.7%
	very fine gravel	2.0	2	2.0%	90.0%	0	0	0.0%	57.7%
C	fine gravel	4.0	0	0.0%	90.0%	1	0	1.0%	58.7%
G	fine gravel	5.7	2	2.0%	92.0%	8	0	7.7%	66.3%
r	medium gravel	8.0	4	4.0%	96.0%	3	0	2.9%	69.2%
a	medium gravel	11.3	4	4.0%	100.0%	7	0	6.7%	76.0%
v	course gravel	16.0	0	0.0%	100.0%	2	0	1.9%	77.9%
e	course gravel	22.6	0	0.0%	100.0%	6	0	5.8%	83.7%
1	very course gravel	32	0	0.0%	100.0%	7	0	6.7%	90.4%
	very course gravel	45	0	0.0%	100.0%	5	0	4.8%	95.2%
	small cobble	64	0	0.0%	100.0%	3	0	2.9%	98.1%
Cabble	medium cobble	90	0	0.0%	100.0%	1	0	1.0%	99.0%
Cobbie	large cobble	128	0	0.0%	100.0%	1	0	1.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAI	L / %of whole count		100	100.0%		59	45	100.0%	

	d16	d35	d50	d84	d95
As-Built	0.00	0.08	0.11	0.36	8.95
2004	0.14	0.24	0.36	27.88	53.86

Project Name	Beaver Creek
Cross Section	X7 - Station 36+50
Feature	Pool
Date	10/20/04
Crew	Shaffer, Bidelspach

Cross Section #1

Brush Creek			As-Built			2	004		
Description	Material	Size (mm)	Pool	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	38	38.0%	38.0%	0	5	4.8%	4.8%
	very fine sand	0.062	22	22.0%	60.0%	0	0	0.0%	4.8%
	fine sand	0.125	10	10.0%	70.0%	4	20	23.1%	27.9%
Sand	medium sand	0.25	12	12.0%	82.0%	5	20	24.0%	51.9%
	course sand	0.50	6	6.0%	88.0%	6	0	5.8%	57.7%
	very course sand	1.0	0	0.0%	88.0%	0	0	0.0%	57.7%
	very fine gravel	2.0	2	2.0%	90.0%	0	0	0.0%	57.7%
C	fine gravel	4.0	0	0.0%	90.0%	1	0	1.0%	58.7%
G "	fine gravel	5.7	6	6.0%	96.0%	8	0	7.7%	66.3%
1	medium gravel	8.0	4	4.0%	100.0%	3	0	2.9%	69.2%
a	medium gravel	11.3	0	0.0%	100.0%	7	0	6.7%	76.0%
v	course gravel	16.0	0	0.0%	100.0%	2	0	1.9%	77.9%
e	course gravel	22.6	0	0.0%	100.0%	6	0	5.8%	83.7%
1	very course gravel	32	0	0.0%	100.0%	7	0	6.7%	90.4%
	very course gravel	45	0	0.0%	100.0%	5	0	4.8%	95.2%
	small cobble	64	0	0.0%	100.0%	3	0	2.9%	98.1%
Cabble	medium cobble	90	0	0.0%	100.0%	1	0	1.0%	99.0%
Cobble	large cobble	128	0	0.0%	100.0%	1	0	1.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTA	L / %of whole count		100	100.0%		59	45	100.0%	

	d16	d35	d50	d84	d95
As-Built	0.00	0.00	0.08	0.50	6.52
2004	0.14	0.24	0.36	27.88	53.86

Project Name Beaver Creek	Symbol	Key		
Task Longitudinal Profile	Т	Thalweg	bro	bedrock outcropping
Section	TR	Head of Riffle	xs	Cross section
Date 10/7/03	TP	Head of Pool	xvane	Cross vane
Crew Dan Clinton, Jan Patterson	TU	Head of Run		
	TM	Max Pool		

2004 Survey*	Survey* * 2004 elev adjusted up by 1.0 ft						
TW	TW	WS	WS	BKF	BKF		
Station	Elev	Station	Elev	Station	Elev	Feature	
00+03.5	959.11	00+02.2	959.48				
01+17.5	957.5	00+16.8	958.82	00+18.1	962.75	xs	
01+75.8	957.21	00+58.0	958.53	00+40.6	962.53	xvane	
02+38.0	955.61	01+14.0	958.28	00+48.3	962.16	Max Pool	
02+58.5	956.8	01+59.2	957.84	00+48.5	961.96	xvane	
02+80.6	955.57	01+87.3	957.62	00+70.1	961.49	Max Pool	
03+44.8	930.49	02+17.8	937.84	00+70.4	901.89	xvane Mox Bool	
02:80.7	953.54	02+02.1	957.44	01/31.3	001.00	Max Pool	
03+94.5	955.19	02+92.1	957.55	01+21.3	961.41	Head of Glide	
05+36.2	954.18	03+451	956.72	01+46.9	961.34	Max Pool	
06+20.5	955.02	03+60.6	956.43	01+73.4	961.23	bro	
06+35.1	954.31	03+92.7	956.47	01+76.0	961.27	bro	
07+81.5	951.95	04+19.3	955.72	02+14.5	961.54	Max Pool	
08+09.4	953.91	04+68.4	956.32	02+23.3	960.93	xvane	
08+30.6	952.83	05+02.4	956.17	02+49.0	961.13	scourpool	
08+85.2	953.67	05+37.5	955.8	02+87.7	961.81	xvane	
09+00.5	952.43	05+57.8	955.21	02+97.2	960.32	scourpool	
09+42.2	953.7	05+75.5	955.81	03+35.9	960.06	xvane	
10+10.5	952.42	05+99.8	955.48	03+39.5	960.77	Head of Glide	
10+70.7	953.64	06+59.5	954.71	03+75.7	960.89	xvane	
10+80.2	950.18	07+46.6	954.45	03+76.6	960.04	scourpool	
11+07.5	951.21	07+64.2	954.37	03+77.4	961.95	Head of Glide	
11+34.4	950.82	08+00.2	954.73	03+78.7	959.71	xs	
12+12.5	950.17	08+39.0	954.09	03+89.0	960.27	Max Pool	
12+34.3	952.69	08+59.7	954.05	04+13.8	960.37	xvane	
12+69.1	949.97	08+88.1	954.01	04+19.5	960.29	Head of Glide	
13+06.2	951.48	09+24.7	954.01	04+46.0	960.16	xvane	
13+48.1	952.08	09+54.6	953.96	04+48.6	960.67	xvane	
13+48.7	952.11	09+94.6	953.97	04+70.7	959.55	xvane	
13+55.6	949.91	10+38.4	953.9	05+02.8	960.04	scourpool	
13+30.8	950.01	10+71.6	955.96	05+06.8	958.94	5	
13+82.0	931.47	10+81.1	932.89	05+20.4	958.94	Tra	
14:22.6	949.95	11+07.9	932.79	05+00.2	937.97	Ind Max Baal	
14+33.0	948.0	11+27.0	932.87	05+68.5	959.71	Max Pool	
14+47.4	931.19	11+40.3	932.64	05+73.8	958.71	xvane	
14+77.3	940.40	12+42.8	952.08	05+74.0	959.07	Head of Clide	
15+74.4	947.74	12+42.0	952.31	06+66.4	957.98	Max Pool	
16+08.1	949.86	12+00.0	952.32	06+00.4	957.90	wax Pool	
16+87.1	948.07	13+40.2	952.28	07+25.4	957.82	Max Pool	
17+13.5	949.42	13+46.7	952.34	07+57.0	958.80	xvane	
17+37.6	947.93	13+53.0	951.51	07+83.1	958.89	scourpool	
17+88.3	947.52	13+53.6	952.23	08+00.3	957.56	Max Pool	
18+04.7	948.08	13+61.0	951.47	08+18.7	958.36	Head of Glide	
18+23.2	949.03	13+75.2	951.54	08+74.1	957.55	xvane	
18+47.6	945.45	14+01.0	951.46	08+84.7	957.32	scourpool	
19+27.2	947.78	14+20.8	951.46	09+44.6	957.99	Lv	
19+61.9	946.87	14+36.6	951.48	09+57.0	957.99	Max Pool	
20+05.4	948.6	14+44.3	951.46	09+97.2	958.91	xvane	
20+35.4	945.39	14+60.1	951.13	10+13.3	957.83	scourpool	
20+90.7	945.75	14+74.1	951.17	10+51.2	957.42	dw	
22+06.0	945.53	14+91.7	951.13	10+57.7	957.04	Max Pool	
22+34.6	946.05	15+21.9	950.49	10+57.9	957.56		
22+37.9	947.63	15+48.8	950.52	10+91.5	956.61	scourpool	
22+39.2	946.6	15+76.9	950.51	10+92.8	957.35	t	
22+41.1	947.57	16+07.5	950.39	11+20.0	957.98	v	
22+58.3	945.73	16+32.3	949.69	11+33.1	956.58	scourpool	
24+03.8	944.63	16+/0.2	950.06	11+48.7	959.4	V.	
24+19.9	944.24	16+82.5	949.95	11+63.4	956.7	Max Pool	
24+58.0	944.52	17:50 5	949.95	11+85.9	957.70	XS	
25+07.8	945.51	17:00.0	949.72	12+12.1	956.48	Max Pool	
25+22.5	944.91	17+80.8	949.47	12+12.3	957.14	mead of Glide	
20+39.4	945.42	19+02.2	049.47 040.46	12+00.2	950.3/	Max PODI	
20+73.9	945.93	18+16.4	949.40	12+/1.3	950.0d	Max Pool	
28:24.6	942.7	19+20.9	049.44	13+20.9	950.12	INIAX PODI	
20124.0	942.54	18+62.0	940.00	13+48 F	056 31	Max Pool	
29+50.5	042.04	18+73.5	940.92	13+51.2	955.60	Head of Clinic	
30+01.7	942.23	19+03.1	948.97	13+78.9	955.52	Pu	
30+04.1	942.71	19+36.9	948.95	13+81.6	955.94	Rv	
30+12.8	941.8	19+61.5	948.89	13+94.4	954.86	scourpool	
30+26.1	942.24	19+76.0	948,91	14+01.8	955.86	Head of Glide	
30+92.6	941.02	20+04.4	949	14+17.6	956.54	Max Pool	
	071.04	-0101.1	0.10			11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	

04 Surve	y Continued	e				
TW	TW	WS	WS	BKF	BKF	
Station	Elev	Station	Elev	Station	Elev	Feature
30+26.1	942.24	1975.98	948.91	1401.81	955.86	Head of Glide
30+92.6	941.02	2004.43	949	1417.55	956.54	Max Pool
31+38.5	942.1	2016.56	947.72	1429.67	955.53	t
31+79.7	941.91	2036.79	947.71	1438.13	954.68	xvane
31+93.7	941.45	2059.91	947.65	1474.15	954.54	t
32+60.8	939.29	2090.49	947.72	1475.3	954.43	Max Pool
33+57.1	939.86	2126.96	947.71	1516.02	954.9	Max Pool
33+72.1	940.07	2162.61	947.7	1562.24	954.12	Head of Glide
33+78.0	940.71	2238.07	947.64	1596.49	953.74	xvane
34+02.3	939.48	2258.02	947.58	1601.68	953.98	Max Pool
34+46.2	940.16	2290.48	947.14	1614.29	954.14	xs
34+87.6	939.99	2303.18	946.95	1643.23	953.24	Max Pool
35+08.4	940.48	2333.28	946.94	1644.14	953.87	xvane
35+40.3	939.32	2365.94	946.89	1671.59	953.23	Max Pool
35+54.3	939.93	2381.79	946.88	1675 78	953.81	Head of Glide
36+58.0	938.31	2414.45	946.88	1692.23	953.93	Max Pool
36+60.1	938.3	2437.76	946.34	1711.67	954 27	x8
37±03.9	939.8	2461.61	946.33	1714.24	953.63	vuane.
37+35.3	938 31	2401.01	946.16	1725.98	954 31	May Pool
27:90.9	027.92	2501.0	946.1	1729.06	052.84	Max Pool
37±93.5	937.05	2532.89	946.09	1753.32	953.75	Head of Glide
38±05.8	937.70	2557.87	940.07	1763.07	953.73	vuone
38±28.6	937.26	2619	945.36	1783.92	953.60	Recommond
29:69.1	931.20	2017	945.30	1785.16	052.09	accurption
20:00.2	239	2645.86	045.2	1909.27	952.98	Availe May Deel
37+90.2 40+21-2	934.94	2043.00	943.2	1000.37	933.24	max POOI
10+21.2	936.18	2659.89	944.95	1810.03	953.58	Max Pool
40+33.0	937.12	20/9.4	244.92	1017.22	932.00	riedd of Gildê
40+41.3	957.76	2092.39	944.89	1840.94	952.77	xvane
+0+62.2	935.01	2708.02	944.85	1849.99	952.89	scourpool
¥1+23.7	936.49	2/17.12	944.86	1892.72	951.95	KV .
+1+25.9	935.24	2/30.03	944.63	1897.79	952.41	scourpool
\$1+51.2	934.94	2/55.57	944.58	1925.43	952.18	Ip
		2/93.02	944.39	1929.22	952.34	
	l	2822.08	944.28	1944.61	953.92	
		2831.84	944.14	1964.12	952.29	
	l	2849.35	944.14	1967.66	952.67	
		2866.7	944.15	1992.24	952.15	
		2882.89	944.11	1997.23	953.49	
		2890.21	944.04	2018.84	952.36	
		2918.02	944.05	2041.05	953.92	
		2943.86	944.02	2059.59	952.04	
		2968.07	944.03	2102.57	952.29	
		2986.53	943.91	2137.77	952.25	
		3001.64	943.84	2169.42	951.75	
		3008.7	943.3	2186.49	951.93	
-		3022.47	943.31	2186.98	951.89	
		3040.89	943.28	2218.28	951.1	
		3074.07	943.06	2226.83	951.74	
		3093.1	942.84	2244.84	950.66	
		3105.65	942.7	2245.25	951.35	
		3140.84	942.63	2253.88	951.57	
		3150.74	942.59	2259.31	951.54	
		3179.55	942.41	2270.78	951.48	
		3191.45	942.06	2277.54	950.06	
		3191.55	942.05	2292.1	951.36	
		3224.95	941.78	2297.47	951.36	
_		3246.98	941.79	2312.86	950.97	
		3264.52	941.76	2315.12	950.46	
		3284.91	941.8	2352.12	951.29	
		3314.42	941.83	2391.7	949.8	
		3323.77	941.82	2396.7	950.78	
		3343.72	941.55	2427.59	950	
		3363.15	941.62	2435.01	950.38	
		3377.6	941.56	2450.36	951.02	
	1	3389.76	941.13	2466.85	949.47	
		3402.03	941.15	2467.05	951.47	
		3411 24	941 15	2476 57	951.9	
		3411.34	941.15	24/0.5/	951.2	
		3423.68	941.Z	25/2 65	900.43	
		2464.50	341.13	2042.00	949.83	
		3404.59	941.13	2001.05	949.77	
		3400./1	941.15	2000.37	949.75	
		3000.22	941.14	2013.51	947.77	
		3514.4	941.13	2009.17	950.85	
	1	3033.25	940.75	2669.03	948.13	

004 Survey Continued*							
WS	WS	BKF	BKF				
Station	Elev	Station	Elev				
3533.25	940.75	2009.03	948.13				
3542.95	940.81	2007.30	930.30				
2506.21	940.7	2720.16	946.93				
2616.02	940.44	2729.93	946.21				
2641.08	940.44	27705 5.6	947.98				
3641.98	940.3	2785.56	948.9				
3037.30	940.31	2/92.3	948.33				
36/9./	940.32	2811.04	948.23				
3/00.27	940.29	2820.05	947.59				
3/10.55	939.77	2837.46	947.97				
3/49.82	939.48	2842.74	947.97				
37/3.76	939.48	2868.16	947.5				
3805.59	939.47	2882.06	947.4				
3826.46	939.19	2887.44	947.84				
3868.17	939.18	2918.88	947.63				
3871.73	938.65	2932.48	947.34				
3899.33	938.52	2939.42	947.21				
3934.81	938.53	2967.04	946.35				
3953.73	938.33	2984.01	947.5				
3969.01	938.28	3042.19	946.28				
3988.19	938.34	3042.24	947.18				
4004.68	938.34	3084.55	946.79				
4041.78	938.3	3157.61	946.31				
4044.61	937.01	3211.34	945.95				
4058.15	937.01	3284.69	945.11				
4080.28	937	3288.37	945.48				
4101.22	937.01	3341.07	945.16				
4127.76	936.97	3343.69	945.38				
4151.29	936.51	3354.01	944.85				
4173.05	936.5	3372.56	945.46				
		3402.7	944.74				
		3460.71	944.88				
		3465.41	944.54				
		3515.96	944.37				
		3517.22	944.27				
		3591.47	943.8				
		3602.95	944.08				
		3619.58	944.39				
		3640.35	944 43				
		3661.79	942.29				
		3664.28	943.83				
		3725.03	943.92				
		3784.81	942.52				
		3809.4	944				
		3843 23	943.82				
		3922.92	942.44				
		3941.21	942 77				
	1	3968.84	943,63				
		3985 31	943 27				
	1	4007.36	942 01				
		4015 15	942.27				
		4034.34	942.10				
		4058.22	941.81				
		4065.55	041.01				
		4002.25	940.69				
		4092.75	940.08				
		4140.17	020.77				
		4145.00	939.77				
		4460.50	940.30				
		4100.53	940.43				
		4184	940.77				
		4197.2	940.56				
		4200.17	940.07				
		4197.2	940.56				
		4206.17	940.07				
	l						
	l						
_							

As-built					
TW	Adjusted	TW	WS	BKF	
Station	TW Sto	Flev	Flev	Flev	Feature
10.24.0	00.040	0.00.00	Laci	Lici	
10+24.0	00+24.0	960.22			Top Bedrock
10+44.0	00+44.0	957.59			pool below
10+62.0	00+62.0	958.36	958.74	963.31	Top Riffle
12+07.0	02+07.0	957.46	957.87	962.09	XVANE-Top Pool
12+65.0	02+65.0	955.91	957.85	961.81	Max Pool
12:00.0	02:00.0	057.25	057.33	001.01	VALUE THE DWG
12+89.0	02+89.0	937.33	931.11	901.82	AVANE-TOP Rime
13+03.0	03+03.0	955.89			XVANE-Scour Pool
13+16.0	03+16.0	956.85			End Scour Pool
13+73.0	03+73.0	956.15			Log Vane
13+88.0	03+88.0	956.03	956 59	961 16	Top Pool
14.04.0	04:04.0	055.07	056.42	004.00	May Beat
14+04.0	04+04.0	933.07	936.43	961.23	Max Pool
14+45.0	04+43.0	955.93	956.36	960.76	XVANE-Top Riffle
14+53.0	04+53.0	955.45			XVANE-Scour Pool
14+62.0	04+62.0	955.78			End Scour Pool
15+36.0	05+36.0	955.14	955.45	959 71	Top Pool
15:72.0	05:72.0	052.59	055.41	060.02	May Beel
15-86.0	05+75.0	955.58	955.41	900.03	Tee Diffe
15+86.0	05+86.0	954.88	955.38	959.22	Top Riffle
17+02.0	07+02.0	953.96	954.49	958.67	Log XVANE
17+14.0	07+14.0	953.29			XVANE-Scour Pool
17+26.0	07+26.0	952.9			End Scour Pool
17+45.0	07+45.0	952.51	954.47	957.83	Top Pool
18,08.0	08.08.0	952.51	2,54,47	057.04	New Devil
10+00.0	0.60+00	\$33.61	934.47	957.04	MdA FUOI
18+40.0	08+40.0	953.19	954.47	958.14	XVANE-Top Riffle
18+58.0	08+58.0	953.57			XVANE-Scour Pool
18+70.0	08+70.0	953.46			End Scour Pool
19+19.0	09+19.0	952.25	954.15	957.52	LHook/Ton Pool/YSEC
19+19.0	09+19.0	932.23	934.13	957.52	J-HOOK/TOP POD/ASEC
19+48.0	09+48.0	953.58	954.11	957.05	Max Pool
19+75.0	09+75.0	952.07	954.09	957.45	XVANE-Top Riffle
19+99.0	09+99.0	951.97			XVANE-Scour Pool
20+31.0	10+31.0	952.83			Intermediate Point
20:52.0	10:52.0	052.26	052.05	056 75	Tee Beel
20+32.0	10+32.0	952.20	953.95	950.75	New Deal
20+88.0	10+88.0	932.83	933.93	957.24	Max Pool
21+09.0	11+09.0	953.37	953.91	957.30	XVANE-Top Riffle
21+29.0	11+29.0	952.01			XVANE-Scour Pool
21+43.0	11+43.0	952.94			End Scour Pool
21+89.0	11+89.0	952.56			DBI Wing Deflector
22110000	12:110	052.00	052.70	057.40	Tee Deel
22+11.0	12+11.0	952.05	332.19	557.45	TOP POOL
22+55.0	12+55.0	951.59	952.77	956.80	Max Pool
22+67.0	12+67.0	952.14	952.57	955.62	XVANE-Top Riffle
22+87.0	12+87.0	951.59			Intermediate Point
23+02.0	13±02.0	9.49 79			Problem
23:24.0	13:24.0	951.64			End Secur Deal/ Lheak
23+24.0	13+24.0	951.04	054.00	050.47	Ter Deel
23+49.0	13+49.0	951.28	951.93	956.17	Top Pool
23+70.0	13+70.0	950.28	951.96	955.59	Max Pool
23+98.0	13+98.0	951.7	951.97	955.82	XVANE-Problem
24+09.0	14+09.0	950.47			XVANE-Scour Pool
24+20.0	14+20.0	951 15			End Scour Pool
24.46.0	14:46.0	050.64	051.45	055 75	Ten Beel/Tributreu
24+40.0	14+46.0	950.64	931.43	933.75	Top Foor Thousay
24+71.0	14+71.0	949.51	951.51	955.43	Max Pool
24+93.0	14+93.0	951.02	951.48	956.01	XVANE-Top Riffle
25+08.0	15+08.0	950.01			XVANE-Scour Pool
25+27 0	15+27.0	950,35			End Scour Pool
25+53.0	15+53.0	949 64	950.46	954 07	Top Pool
20100.0	16-15-0	040.70	050.45	054.00	New Deed
20+15.0	10+15.0	948.76	900.45	954.22	Widx P'00I
26+52.0	16+52.0	949.81	950.42	954.29	XVANE-Top Riffle
26+67.0	16+67.0	949.52			XVANE-Scour Pool
26+79 0	16+79.0	949,84			End Scour Pool
27+19.0	17+19.0	949 24	040.90	953.91	Top Pool
27.24.0	17:24.0	047.04	040.09	052.01	May Deel
2/+34.0	1/+54.0	947.61	949.89	953.84	Widx P'00I
27+60.0	17+60.0	949.36	949.86	953.68	Log XVANE-Top Riffle
27+81.0	17+81.0	948.17			XVANE-Scour Pool
27+93.0	17+93.0	948.89			End Scour Pool
28+17.0	18+17.0	948 87	949 48	953.2	Top Pool
20117.0	18,27.0	040.47	040.40	050.2	May Deel
28+31.0	18+57.0	948.47	949.48	953.4	Widx P'00I
28+67.0	18+67.0	949.01	949.4	952.88	XVANE-Top Riffle
28+90.0	18+90.0	946.93			XVANE-Scour Pool
29+13 0	19+13.0	948,18			End Scour Pool
29+75 0	19±75.0	948 22	948.96	951.92	Log vane-Top Pool
20113.0	20.10.0	047.55	340.90	050.12	Log valie-rop rool
30+10.0	∠0+10.0	947.45	948.93	952.19	Widx P'00I
30+53.0	20+53.0	948.53	948.88	952.05	XVANE-Top Riffle
30+70.0	20+70.0	945.84			XVANE-Scour Pool
30+99.0	20+99.0	947.68			End Scour Pool
31+35.0	21+35.0	947 59			DBI Wing Deflector
00.00.0		5-11.58			

As-built Continue								
TW	TW	ws	BKF					
Station	Elev	Elev	Elev	Feature				
3239	947.26	948	951.70	Top Pool				
3256	946.1	948	951.74	Max Pool				
3287	947.52	947.99	951.62	XVANE-Top Riffle				
3300	940.22			End Scour Pool				
3327	940.71			DRI Miss Deflector				
3446	946.37	946.95	950.66	Log vane-Top Pool				
3488	945.23	946.83	950.17	Max Pool/XSEC				
3507	946.39			Rock Vane				
3547	945.51	946.62	950.67	Max Pool				
3567	946.06	946.62	950.63	XVANE-Top Riffle				
3597	944.09			XVANE-Scour Pool				
3610	945.57			End Scour Pool				
36.50	945.76			XVANE				
3645	944.29			XVANE-Scour Pool				
3706	943.01	945.27	948 19	Top Pool				
3723	944.06	745.21	540.15	Log Vane				
3746	943.55	945.18	948.36	Max Pool				
3772	944.41	945.12	948.37	Top Riffle				
3813	944.24			Tributary				
3860	944.27	944.75	948.27	Top Pool				
3871	943.12	944.76	948.15	Max Pool				
3880	944.15	944.69	948.31	XVANE				
3893	943.67			XVANE-Scour Pool				
3913	943.77			End Scour Pool				
3938	943.91	044.02	047.61	Intermediate Point				
3957	943.48	944.03	946.89	May Pool				
3996	943.57	943.98	946.72	Top Riffle				
4066	943.38			XVANE				
4096	942.04			XVANE-Scour Pool				
4110	942.57			End Scour Pool				
4139	942.57	943.14	947.38	Top Pool				
4147	941.65	943.15	947.30	Max Pool				
4157	942.58			XVANE-Top Riffle				
41/4	941.94			XVANE-Scour Pool				
4192	942.31			End Scour Pool				
42.32	942.21			DBL Wing Deflector				
4389	941.06	941 79	945.61	Top Pool				
4413	940.08	941.79	945.55	Max Pool				
4435	941.19	941.77	945.07	XVANE-Top Riffle				
4468	940.26			XVANE-Scour Pool				
4479	940.7			End Scour Pool				
4515	940.56	941.43	944.5	Top Pool				
4534	940.15	941.43	944.64	Max Pool XV/ANE Tee Diffle				
4000	940.0	941.57	944.61	XVANE-TOP KIIIIe				
4620	940.26			End Scour Pool				
4672	940.23	940.86	944.06	Log vane-Top Pool				
4712	938.83	940.72	944.05	Max Pool-XSEC				
4756	940.15	940.66	944.12	XVANE-Top Riffle				
4788	938.84			XVANE-Scour Pool				
4804	939.23			End Scour Pool				
4856	939.48	940.1	944.01	XVANE				
4868	938.97			XVANE-Scour Pool				
4887	939.30	040.22	042.55	End Scour Pool				
4917	939.76	940.32	945.55	XVANE-Scour Pool				
4970	939.24			End Scour Pool				
5006	939.01	939.28	942.63	Rock Vane-Top Pool				
5053	937.43	939.26	942.83	Max Pool				
5073	937.66			Intermediate Point				
5090	938.54	939.21	942.68	XVANE				
5094	937.16			XVANE-Scour Pool				
5107	937.69			End Scour Pool				
5127	936.18			Intermediate Point				
5143	937.83	000.04	0.12.10	Intermediate Point				
5210	937.8	938.24	943.49	XVANE-Scour Bool				
5235	937 36			End Scour Pool				
5242	937 49	937,88	943 89	XVANE-Scour Pool				
5270	937.03	937.69		End Scour Pool				

	SLOPE A BEAVER	ND LENGTH CREEK 200	I CALCULA 4	TIONS			
	Riffle Station	Riffle Elev	Riffle Lenath	Riffle Slope	Pool Station	Pool Length	Pool Spacing
	2	959.48			187		~
	187	957.62	185	1.01%	313	126	
	313	957.55			360		
	360	956.43	47	2.38%	468	108	164
	468	956.32			537		
	537	955.8	69	0.75%	575	38	142
	575	955.81			659		
	659	954.71	84	1.31%	800	141	173.5
	800	954.73			839		
	839	954.09	39	1.64%	1071	232	225.5
	1193	952.68			1081	_	
	1340	952.28	147	0.27%	1193	112	182
	1607	950.39			1361		
	1780	949.47	173	0.53%	1607	246	347
	1817	949.44			1780		
	1829	948.98	12	3.83%	1817	37	314.5
	2237	947.64	.=	0.0070	1829	0,	01110
	2303	946.95	66	1.05%	2004	175	118
	2333	946.34		1.00 / 0	2016	115	110
	2656	944 93	219	0.64%	2010	221	210
	2030	944.86	210	0.0170	2303	221	210
	2890	944.04	173	0.47%	2303	111	232
	2050	944.03	170	0.4770	2414	111	232
	3001	943.84	33	0.58%	2030	61	328
	3040	943.28		0.0070	2717	01	520
	3225	941.78	185	0.81%	2870	78	242.5
	3323	941.82	100	0.0170	3008	78	242.5
	3323	941.52	54	0.48%	3040	32	05
	3533	940.75	54	0.4070	3040	52).
	3642	940.75	109	0.41%	3223	08	250
	2710	020.77	103	0.4176	3323	90	2.50
	3740	030./8	30	0.74%	3514	125	177 5
	2805	030.40		0.74%	3514	123	177.5
	3826	030.10	21	1 33%	3700	58	210.5
	2871	038.65	21	1.55 /0	3700	58	219.5
	2800	938.03	28	0.46%	3749	56	106
	2024	038.52	20	0.40 //	3803	50	100
	3934	038.28	35	0.71%	3820	12	70
	3909	930.20		0.71%	3808	42	7.
	4127	930.97	24	1.029/	2024	25	60.5
	4151	930.51	24	1.92%	3934	33	09.3
					3969	70	00.5
					4041	12	88.3
A	Slone	0.550/			4044	0.2	00.5
Avg wate	Stope	0.55%		<u> </u>	4127	83	80.5
		Min	10	0.27%	Min	22	70
		May	1∠ 210	3 830/	May	52 216	2/17
		Median	EU 213	0.75%	wax Madian	24U Q1	J4/ 179

	Pattern Measurement										
	BEA	2004	2004	2004	Design	2004					
	Design Wasseley eth	2004 Wassalar ath	Design	2004 Delterri delt	Design	2004 Ded. Of Curry					
	wavelength	wavelength	Beitwidth		Rad. OI Curv	Rad. Of Curv.					
	242	240	208	101	55 70	68 01					
	375	375	123	162	12	81					
	213	239	48	80	63	/5					
	278	300	93	60	65	90					
	280	267	78	56	72	170					
	192	182	78	67	60	145					
	272	273	43	99	75	90					
	269	222	137	54	60	158					
	213	265	204	55	60	123					
	389	389	87	84	76	126					
	485	481	92	81	72	122					
	262	221	61	192	72	80					
	230	227	61	138	75	122					
	249	234	104	46	75	112					
	257	253	76	61	52	46					
	395	411	64	77	54	42					
	381	357	71	82	45	93					
	436	279	87	39	72	93					
	286	450	157	116	72	79					
	386		108		59	79					
					72	66					
					64	66					
					60						
					70						
Median	275.0	267.0	87.0	80.0	65.0	90.0					
Min	192.0	182.0	43.0	39.0	45.0	42.0					
Max	485.0	481.0	208.0	192.0	76.0	170.0					